📊
CTF-All-In-One
  • 简介
  • 前言
  • 一、基础知识篇
    • 1.1 CTF 简介
    • 1.2 学习方法
    • 1.3 Linux 基础
    • 1.4 Web 安全基础
      • 1.4.1 HTML 基础
      • 1.4.2 HTTP 协议基础
      • 1.4.3 JavaScript 基础
      • 1.4.4 常见 Web 服务器基础
      • 1.4.5 OWASP Top Ten Project 漏洞基础
      • 1.4.6 PHP 源码审计基础
    • 1.5 逆向工程基础
      • 1.5.1 C/C++ 语言基础
      • 1.5.2 汇编基础
      • 1.5.3 Linux ELF
      • 1.5.4 Windows PE
      • 1.5.5 静态链接
      • 1.5.6 动态链接
      • 1.5.7 内存管理
      • 1.5.8 glibc malloc
      • 1.5.9 Linux 内核
      • 1.5.10 Windows 内核
      • 1.5.11 jemalloc
    • 1.6 密码学基础
      • 1.6.1 密码学导论
      • 1.6.2 流密码
      • 1.6.3 分组密码
      • 1.6.4 公钥密码
      • 1.6.5 消息认证和哈希函数
      • 1.6.6 数字签名
      • 1.6.7 密码协议
      • 1.6.8 密钥分配与管理
      • 1.6.9 数字货币
    • 1.7 Android 安全基础
      • 1.7.1 Android 环境搭建
      • 1.7.2 Dalvik 指令集
      • 1.7.3 ARM 汇编基础
      • 1.7.4 Android 常用工具
  • 二、工具篇
    • 虚拟化分析环境
      • 2.1.1 VirtualBox
      • 2.1.2 QEMU
      • 2.1.3 Docker
      • 2.1.4 Unicorn
    • 静态分析工具
      • 2.2.1 radare2
      • 2.2.2 IDA Pro
      • 2.2.3 JEB
      • 2.2.4 Capstone
      • 2.2.5 Keystone
      • 2.2.6 Ghidra
    • 动态分析工具
      • 2.3.1 GDB
      • 2.3.2 OllyDbg
      • 2.3.3 x64dbg
      • 2.3.4 WinDbg
      • 2.3.5 LLDB
    • 其他工具
      • 2.4.1 pwntools
      • 2.4.2 zio
      • 2.4.3 metasploit
      • 2.4.4 binwalk
      • 2.4.5 Burp Suite
      • 2.4.6 Wireshark
      • 2.4.7 Cuckoo Sandbox
  • 三、分类专题篇
    • Pwn
      • 3.1.1 格式化字符串漏洞
      • 3.1.2 整数溢出
      • 3.1.3 栈溢出
      • 3.1.4 返回导向编程(ROP)(x86)
      • 3.1.5 返回导向编程(ROP)(ARM)
      • 3.1.6 Linux 堆利用(一)
      • 3.1.7 Linux 堆利用(二)
      • 3.1.8 Linux 堆利用(三)
      • 3.1.9 Linux 堆利用(四)
      • 3.1.10 内核 ROP
      • 3.1.11 Linux 内核漏洞利用
      • 3.1.12 Windows 内核漏洞利用
      • 3.1.13 竞争条件
      • 3.1.14 虚拟机逃逸
    • Reverse
      • 3.2.1 patch 二进制文件
      • 3.2.2 脱壳技术(PE)
      • 3.2.3 脱壳技术(ELF)
      • 3.2.4 反调试技术(PE)
      • 3.2.5 反调试技术(ELF)
      • 3.2.6 指令混淆
    • Web
      • 3.3.1 SQL 注入利用
      • 3.3.2 XSS 漏洞利用
    • Crypto
    • Misc
      • 3.5.1 Lsb
    • Mobile
  • 四、技巧篇
    • 4.1 Linux 内核调试
    • 4.2 Linux 命令行技巧
    • 4.3 GCC 编译参数解析
    • 4.4 GCC 堆栈保护技术
    • 4.5 ROP 防御技术
    • 4.6 one-gadget RCE
    • 4.7 通用 gadget
    • 4.8 使用 DynELF 泄露函数地址
    • 4.9 shellcode 开发
    • 4.10 跳转导向编程(JOP)
    • 4.11 利用 mprotect 修改栈权限
    • 4.12 利用 __stack_chk_fail
    • 4.13 利用 _IO_FILE 结构
    • 4.14 glibc tcache 机制
    • 4.15 利用 vsyscall 和 vDSO
  • 五、高级篇
    • 5.0 软件漏洞分析
    • 5.1 模糊测试
      • 5.1.1 AFL fuzzer
      • 5.1.2 libFuzzer
    • 5.2 动态二进制插桩
      • 5.2.1 Pin
      • 5.2.2 DynamoRio
      • 5.2.3 Valgrind
    • 5.3 符号执行
      • 5.3.1 angr
      • 5.3.2 Triton
      • 5.3.3 KLEE
      • 5.3.4 S²E
    • 5.4 数据流分析
      • 5.4.1 Soot
    • 5.5 污点分析
      • 5.5.1 TaintCheck
    • 5.6 LLVM
      • 5.6.1 Clang
    • 5.7 程序切片
    • 5.8 SAT/SMT
      • 5.8.1 Z3
    • 5.9 基于模式的漏洞分析
    • 5.10 基于二进制比对的漏洞分析
    • 5.11 反编译技术
      • 5.11.1 RetDec
  • 六、题解篇
    • Pwn
      • 6.1.1 pwn HCTF2016 brop
      • 6.1.2 pwn NJCTF2017 pingme
      • 6.1.3 pwn XDCTF2015 pwn200
      • 6.1.4 pwn BackdoorCTF2017 Fun-Signals
      • 6.1.5 pwn GreHackCTF2017 beerfighter
      • 6.1.6 pwn DefconCTF2015 fuckup
      • 6.1.7 pwn 0CTF2015 freenote
      • 6.1.8 pwn DCTF2017 Flex
      • 6.1.9 pwn RHme3 Exploitation
      • 6.1.10 pwn 0CTF2017 BabyHeap2017
      • 6.1.11 pwn 9447CTF2015 Search-Engine
      • 6.1.12 pwn N1CTF2018 vote
      • 6.1.13 pwn 34C3CTF2017 readme_revenge
      • 6.1.14 pwn 32C3CTF2015 readme
      • 6.1.15 pwn 34C3CTF2017 SimpleGC
      • 6.1.16 pwn HITBCTF2017 1000levels
      • 6.1.17 pwn SECCONCTF2016 jmper
      • 6.1.18 pwn HITBCTF2017 Sentosa
      • 6.1.19 pwn HITBCTF2018 gundam
      • 6.1.20 pwn 33C3CTF2016 babyfengshui
      • 6.1.21 pwn HITCONCTF2016 Secret_Holder
      • 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
      • 6.1.23 pwn BCTF2016 bcloud
      • 6.1.24 pwn HITCONCTF2016 House_of_Orange
      • 6.1.25 pwn HCTF2017 babyprintf
      • 6.1.26 pwn 34C3CTF2017 300
      • 6.1.27 pwn SECCONCTF2016 tinypad
      • 6.1.28 pwn ASISCTF2016 b00ks
      • 6.1.29 pwn Insomni'hack_teaserCTF2017 The_Great_Escape_part-3
      • 6.1.30 pwn HITCONCTF2017 Ghost_in_the_heap
      • 6.1.31 pwn HITBCTF2018 mutepig
      • 6.1.32 pwn SECCONCTF2017 vm_no_fun
      • 6.1.33 pwn 34C3CTF2017 LFA
      • 6.1.34 pwn N1CTF2018 memsafety
      • 6.1.35 pwn 0CTF2018 heapstorm2
      • 6.1.36 pwn NJCTF2017 messager
      • 6.1.37 pwn sixstarctf2018 babystack
      • 6.1.38 pwn HITCONCMT2017 pwn200
      • 6.1.39 pwn BCTF2018 house_of_Atum
      • 6.1.40 pwn LCTF2016 pwn200
      • 6.1.41 pwn PlaidCTF2015 PlaidDB
      • 6.1.42 pwn hacklu2015 bookstore
      • 6.1.43 pwn 0CTF2018 babyheap
      • 6.1.44 pwn ASIS2017 start_hard
      • 6.1.45 pwn LCTF2016 pwn100
    • Reverse
      • 6.2.1 re XHPCTF2017 dont_panic
      • 6.2.2 re ECTF2016 tayy
      • 6.2.3 re CodegateCTF2017 angrybird
      • 6.2.4 re CSAWCTF2015 wyvern
      • 6.2.5 re PicoCTF2014 Baleful
      • 6.2.6 re SECCONCTF2017 printf_machine
      • 6.2.7 re CodegateCTF2018 RedVelvet
      • 6.2.8 re DefcampCTF2015 entry_language
    • Web
      • 6.3.1 web HCTF2017 babycrack
    • Crypto
    • Misc
    • Mobile
  • 七、实战篇
    • CVE
      • 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
      • 7.1.2 CVE-2015-0235 glibc __nss_hostname_digits_dots 堆溢出漏洞
      • 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
      • 7.1.4 CVE-2017-13089 wget skip_short_body 栈溢出漏洞
      • 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
      • 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
      • 7.1.7 CVE-2018-6323 GNU binutils elf_object_p 整型溢出漏洞
      • 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
      • 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
    • Malware
  • 八、学术篇
    • 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
    • 8.2 Return-Oriented Programming without Returns
    • 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
    • 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
    • 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
    • 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
    • 8.9 Symbolic Execution for Software Testing: Three Decades Later
    • 8.10 AEG: Automatic Exploit Generation
    • 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Softwa
    • 8.13 New Frontiers of Reverse Engineering
    • 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
    • 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
    • 8.22 Practical Memory Checking With Dr. Memory
    • 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
    • 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
    • 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
    • 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
    • 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
    • 8.28 Cross-Architecture Bug Search in Binary Executables
    • 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
    • 8.30 Preventing brute force attacks against stack canary protection on networking servers
    • 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
    • 8.34 Enhancing Symbolic Execution with Veritesting
    • 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
    • 8.39 DART: Directed Automated Random Testing
    • 8.40 EXE: Automatically Generating Inputs of Death
    • 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
    • 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits
    • 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
    • 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
    • 8.45 Ramblr: Making Reassembly Great Again
    • 8.46 FreeGuard: A Faster Secure Heap Allocator
    • 8.48 Reassembleable Disassembling
  • 九、附录
    • 9.1 更多 Linux 工具
    • 9.2 更多 Windows 工具
    • 9.3 更多资源
    • 9.4 Linux 系统调用表
    • 9.5 python2到3字符串转换
    • 9.6 幻灯片
Powered by GitBook
On this page
  • RetDec 简介
  • 安装
  • 入门
  • r2pipe decompiler
  • 参考资料

Was this helpful?

  1. 五、高级篇
  2. 5.11 反编译技术

5.11.1 RetDec

Previous5.11 反编译技术Next六、题解篇

Last updated 3 years ago

Was this helpful?

前面介绍过 IDA Pro,其 F5 已经具有巨强大的反编译能力了,但这本书一直到现在,由于本人的某种执念,都是在硬怼汇编代码,没有用到 IDA,虽说这样能锻炼到我们的汇编能力,但也可以说是无故加大了逆向的难度。但现在事情出现了转机,安全公司 Avast 开源了它的反编译器 RetDec,能力虽不及 IDA,目前也只支持 32 位,但好歹有了第一步,未来会好起来的。

RetDec 简介

是一个可重定向的机器码反编译器,它基于 LLVM,支持各种体系结构、操作系统和文件格式:

  • 支持的文件格式:ELF,PE,Mach-O,COFF,AR(存档),Intel HEX 和原始机器码。

  • 支持的体系结构(仅限 32 位):Intel x86,ARM,MIPS,PIC32 和 PowerPC。

安装

在 Linux 上,你需要自己构建和安装。

安装依赖:

$ sudo apt-get install build-essential cmake coreutils wget bc graphviz upx flex bison zlib1g-dev libtinfo-dev autoconf pkg-config m4 libtool

把项目连同子模块一起拉下来:

$ git clone --recursive https://github.com/avast-tl/retdec

接下来要注意了,由于项目自己的问题,在运行 cmake 的时候一定指定一个干净的目录,不要在默认的 /usr 或者 /usr/local 里,可以像下面这样:

$ cd retdec
$ mkdir build && cd build
$ cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local/retdec
$ make && sudo make install

入门

安装完成后,我们用 helloword 大法试一下,注意将其编译成 32 位:

#include <stdio.h>
int main() {
        printf("hello world!\n");
        return 0;
}

运行 decompile.sh 反编译它,我们截取出部分重要的过程和输出:

$ /usr/local/retdec/bin/decompile.sh a.out
##### Checking if file is a Mach-O Universal static library...
RUN: /usr/local/retdec/bin/macho-extractor --list /home/firmy/test/a.out

##### Checking if file is an archive...
RUN: /usr/local/retdec/bin/ar-extractor --arch-magic /home/firmy/test/a.out

##### Gathering file information...
RUN: /usr/local/retdec/bin/fileinfo -c /home/firmy/test/a.out.c.json --similarity /home/firmy/test/a.out --no-hashes=all --crypto /usr/local/retdec/bin/../share/generic/yara_patterns/signsrch/signsrch.yara

##### Trying to unpack /home/firmy/test/a.out into /home/firmy/test/a.out-unpacked.tmp by using generic unpacker...
RUN: /usr/local/retdec/bin/unpacker -d /usr/local/retdec/bin/unpacker-plugins -o /home/firmy/test/a.out-unpacked.tmp /home/firmy/test/a.out

##### Trying to unpack /home/firmy/test/a.out into /home/firmy/test/a.out-unpacked.tmp by using UPX...
RUN: upx -d /home/firmy/test/a.out -o /home/firmy/test/a.out-unpacked.tmp

##### Decompiling /home/firmy/test/a.out into /home/firmy/test/a.out.c.backend.bc...
RUN: /usr/local/retdec/bin/bin2llvmir -provider-init -config-path /home/firmy/test/a.out.c.json -decoder -disable-inlining -disable-simplify-libcalls -inst-opt -verify -volatilize -instcombine -reassociate -volatilize -control-flow -cfg-fnc-detect -main-detection -register -stack -control-flow -cond-branch-opt -syscalls -idioms-libgcc -constants -param-return -local-vars -type-conversions -simple-types -generate-dsm -remove-asm-instrs -select-fncs -unreachable-funcs -type-conversions -stack-protect -verify -instcombine -tbaa -targetlibinfo -basicaa -domtree -simplifycfg -domtree -early-cse -lower-expect -targetlibinfo -tbaa -basicaa -globalopt -mem2reg -instcombine -simplifycfg -basiccg -domtree -early-cse -lazy-value-info -jump-threading -correlated-propagation -simplifycfg -instcombine -simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa -loop-rotate -licm -lcssa -instcombine -scalar-evolution -loop-simplifycfg -loop-simplify -aa -loop-accesses -loop-load-elim -lcssa -indvars -loop-idiom -loop-deletion -memdep -gvn -memdep -sccp -instcombine -lazy-value-info -jump-threading -correlated-propagation -domtree -memdep -dse -dce -bdce -adce -die -simplifycfg -instcombine -strip-dead-prototypes -globaldce -constmerge -constprop -instnamer -domtree -instcombine -never-returning-funcs -adapter-methods -class-hierarchy -instcombine -tbaa -targetlibinfo -basicaa -domtree -simplifycfg -domtree -early-cse -lower-expect -targetlibinfo -tbaa -basicaa -globalopt -mem2reg -instcombine -simplifycfg -basiccg -domtree -early-cse -lazy-value-info -jump-threading -correlated-propagation -simplifycfg -instcombine -simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa -loop-rotate -licm -lcssa -instcombine -scalar-evolution -loop-simplifycfg -loop-simplify -aa -loop-accesses -loop-load-elim -lcssa -indvars -loop-idiom -loop-deletion -memdep -gvn -memdep -sccp -instcombine -lazy-value-info -jump-threading -correlated-propagation -domtree -memdep -dse -dce -bdce -adce -die -simplifycfg -instcombine -strip-dead-prototypes -globaldce -constmerge -constprop -instnamer -domtree -instcombine -simple-types -stack-ptr-op-remove -type-conversions -idioms -instcombine -global-to-local -dead-global-assign -instcombine -stack-protect -phi2seq -o /home/firmy/test/a.out.c.backend.bc

##### Decompiling /home/firmy/test/a.out.c.backend.bc into /home/firmy/test/a.out.c...
RUN: /usr/local/retdec/bin/llvmir2hll -target-hll=c -var-renamer=readable -var-name-gen=fruit -var-name-gen-prefix= -call-info-obtainer=optim -arithm-expr-evaluator=c -validate-module -llvmir2bir-converter=orig -o /home/firmy/test/a.out.c /home/firmy/test/a.out.c.backend.bc -enable-debug -emit-debug-comments -config-path=/home/firmy/test/a.out.c.json

##### Done!

总共输出下面几个文件:

$ ls
a.out  a.out.c  a.out.c.backend.bc  a.out.c.backend.ll  a.out.c.frontend.dsm  a.out.c.json

可以看到 RetDec 可以分为三个阶段:

  • 预处理阶段:首先检查文件类型是否为可执行文件,然后调用 fileinfo 获取文件信息生成 a.out.c.json,然后调用 unpacker 查壳和脱壳等操作

  • 核心阶段:接下来才是重头戏,调用 bin2llvmir 将二进制文件转换成 LLVM IR,并输出 a.out.c.frontend.dsm、a.out.c.backend.ll 和 a.out.c.backend.bc

  • 后端阶段:这个阶段通过一系列代码优化和生成等操作,将 LLVM IR 反编译成 C 代码 a.out.c,还有 CFG 等。

整个过程的结构如下:

decompile.sh 有很多选项,使用 decompile.sh -h 查看。

比如反编译指定函数:

$ /usr/local/retdec/bin/decompile.sh --select-functions main a.out

反编译指定的一段地址:

$ /usr/local/retdec/bin/decompile.sh --select-ranges 0x51d-0x558 a.out

生成函数 CFG 图(.dot格式):

$ /usr/local/retdec/bin/decompile.sh --backend-emit-cfg a.out

r2pipe decompiler

radare2 通过 r2pipe 脚本,利用 retdec.com 的 REST API 提供了反编译的功能,所以你首先要到网站上注册,拿到免费的 API key。

安装上该模块,当然你可能需要先安装上 npm,它是 JavaScript 的包管理器:

$ git clone https://github.com/jpenalbae/r2-scripts.git
$ cd r2-scripts/decompiler/
$ npm install

将 API key 写入到 ~/.config/radare2/retdec.key 中,然后就可以开心地反编译了。

还是 helloworld 的例子,用 r2 打开,反编译 main 函数。

[0x000003e0]> #!pipe node /home/firmy/r2-scripts/decompiler/decompile.js @ main
Start: 0x51d
End: 0x558
Uploading binary to retdec.com
Please wait for decompilation to finish....

//
// This file was generated by the Retargetable Decompiler
// Website: https://retdec.com
// Copyright (c) 2017 Retargetable Decompiler <info@retdec.com>
//

#include <stdint.h>
#include <stdio.h>

// ------------------------ Functions -------------------------

// Address range: 0x51d - 0x558
int main() {
    int32_t v1;
    int32_t v2 = __x86_get_pc_thunk_ax((int32_t)&v1, 0);
    puts((char *)(v2 + 175));
    return 0;
}

// --------------- Dynamically Linked Functions ---------------

// int puts(const char * s);

// --------------------- Meta-Information ---------------------

// Detected compiler/packer: gcc (7.2.0)
// Detected functions: 1
// Decompiler release: v2.2.1 (2016-09-07)
// Decompilation date: 2017-12-15 07:48:04

每次输入反编译器路径是不是有点烦,在文件 ~/.config/radare2/radare2rc 里配置一下 alias 就好了,用 $decompile 替代:

# Alias
$decompile=#!pipe node /home/user/r2-scripts/decompiler/decompile.js
[0x000003e0]> $decompile -h

Usage: $decompile [-acChps] [-n naming] @ addr
  -a: disable selective decompilation (decompile the hole file)
  -c: clear comments
  -C: save decompilation results in r2 as a comment
  -p: produce python code instead of C
  -s: silent. Do not display messages
  -h: displays this help menu
  -n naming: select variable naming

Where valid variable namings are:
  readable: Tries to produce as meaningful variable names as possible
  address: Variables are named by their addresses in the binary file
  hungarian: Prefix variables with their type
  simple: Name variables simply by assigning fruit names
  unified: Globals, locals and parameters are named just gX, vX and aX

**********************************************************************
     This will upload the binary being analyzed to retdec.com !!!
                       You have been warned...
**********************************************************************

参考资料

retdec github
RetDec: An Open-Source Machine-Code Decompiler
radare r2pipe decompiler
RetDec
RetDec 简介
安装
使用方法
r2pipe decompiler
参考资料
img