📊
CTF-All-In-One
  • 简介
  • 前言
  • 一、基础知识篇
    • 1.1 CTF 简介
    • 1.2 学习方法
    • 1.3 Linux 基础
    • 1.4 Web 安全基础
      • 1.4.1 HTML 基础
      • 1.4.2 HTTP 协议基础
      • 1.4.3 JavaScript 基础
      • 1.4.4 常见 Web 服务器基础
      • 1.4.5 OWASP Top Ten Project 漏洞基础
      • 1.4.6 PHP 源码审计基础
    • 1.5 逆向工程基础
      • 1.5.1 C/C++ 语言基础
      • 1.5.2 汇编基础
      • 1.5.3 Linux ELF
      • 1.5.4 Windows PE
      • 1.5.5 静态链接
      • 1.5.6 动态链接
      • 1.5.7 内存管理
      • 1.5.8 glibc malloc
      • 1.5.9 Linux 内核
      • 1.5.10 Windows 内核
      • 1.5.11 jemalloc
    • 1.6 密码学基础
      • 1.6.1 密码学导论
      • 1.6.2 流密码
      • 1.6.3 分组密码
      • 1.6.4 公钥密码
      • 1.6.5 消息认证和哈希函数
      • 1.6.6 数字签名
      • 1.6.7 密码协议
      • 1.6.8 密钥分配与管理
      • 1.6.9 数字货币
    • 1.7 Android 安全基础
      • 1.7.1 Android 环境搭建
      • 1.7.2 Dalvik 指令集
      • 1.7.3 ARM 汇编基础
      • 1.7.4 Android 常用工具
  • 二、工具篇
    • 虚拟化分析环境
      • 2.1.1 VirtualBox
      • 2.1.2 QEMU
      • 2.1.3 Docker
      • 2.1.4 Unicorn
    • 静态分析工具
      • 2.2.1 radare2
      • 2.2.2 IDA Pro
      • 2.2.3 JEB
      • 2.2.4 Capstone
      • 2.2.5 Keystone
      • 2.2.6 Ghidra
    • 动态分析工具
      • 2.3.1 GDB
      • 2.3.2 OllyDbg
      • 2.3.3 x64dbg
      • 2.3.4 WinDbg
      • 2.3.5 LLDB
    • 其他工具
      • 2.4.1 pwntools
      • 2.4.2 zio
      • 2.4.3 metasploit
      • 2.4.4 binwalk
      • 2.4.5 Burp Suite
      • 2.4.6 Wireshark
      • 2.4.7 Cuckoo Sandbox
  • 三、分类专题篇
    • Pwn
      • 3.1.1 格式化字符串漏洞
      • 3.1.2 整数溢出
      • 3.1.3 栈溢出
      • 3.1.4 返回导向编程(ROP)(x86)
      • 3.1.5 返回导向编程(ROP)(ARM)
      • 3.1.6 Linux 堆利用(一)
      • 3.1.7 Linux 堆利用(二)
      • 3.1.8 Linux 堆利用(三)
      • 3.1.9 Linux 堆利用(四)
      • 3.1.10 内核 ROP
      • 3.1.11 Linux 内核漏洞利用
      • 3.1.12 Windows 内核漏洞利用
      • 3.1.13 竞争条件
      • 3.1.14 虚拟机逃逸
    • Reverse
      • 3.2.1 patch 二进制文件
      • 3.2.2 脱壳技术(PE)
      • 3.2.3 脱壳技术(ELF)
      • 3.2.4 反调试技术(PE)
      • 3.2.5 反调试技术(ELF)
      • 3.2.6 指令混淆
    • Web
      • 3.3.1 SQL 注入利用
      • 3.3.2 XSS 漏洞利用
    • Crypto
    • Misc
      • 3.5.1 Lsb
    • Mobile
  • 四、技巧篇
    • 4.1 Linux 内核调试
    • 4.2 Linux 命令行技巧
    • 4.3 GCC 编译参数解析
    • 4.4 GCC 堆栈保护技术
    • 4.5 ROP 防御技术
    • 4.6 one-gadget RCE
    • 4.7 通用 gadget
    • 4.8 使用 DynELF 泄露函数地址
    • 4.9 shellcode 开发
    • 4.10 跳转导向编程(JOP)
    • 4.11 利用 mprotect 修改栈权限
    • 4.12 利用 __stack_chk_fail
    • 4.13 利用 _IO_FILE 结构
    • 4.14 glibc tcache 机制
    • 4.15 利用 vsyscall 和 vDSO
  • 五、高级篇
    • 5.0 软件漏洞分析
    • 5.1 模糊测试
      • 5.1.1 AFL fuzzer
      • 5.1.2 libFuzzer
    • 5.2 动态二进制插桩
      • 5.2.1 Pin
      • 5.2.2 DynamoRio
      • 5.2.3 Valgrind
    • 5.3 符号执行
      • 5.3.1 angr
      • 5.3.2 Triton
      • 5.3.3 KLEE
      • 5.3.4 S²E
    • 5.4 数据流分析
      • 5.4.1 Soot
    • 5.5 污点分析
      • 5.5.1 TaintCheck
    • 5.6 LLVM
      • 5.6.1 Clang
    • 5.7 程序切片
    • 5.8 SAT/SMT
      • 5.8.1 Z3
    • 5.9 基于模式的漏洞分析
    • 5.10 基于二进制比对的漏洞分析
    • 5.11 反编译技术
      • 5.11.1 RetDec
  • 六、题解篇
    • Pwn
      • 6.1.1 pwn HCTF2016 brop
      • 6.1.2 pwn NJCTF2017 pingme
      • 6.1.3 pwn XDCTF2015 pwn200
      • 6.1.4 pwn BackdoorCTF2017 Fun-Signals
      • 6.1.5 pwn GreHackCTF2017 beerfighter
      • 6.1.6 pwn DefconCTF2015 fuckup
      • 6.1.7 pwn 0CTF2015 freenote
      • 6.1.8 pwn DCTF2017 Flex
      • 6.1.9 pwn RHme3 Exploitation
      • 6.1.10 pwn 0CTF2017 BabyHeap2017
      • 6.1.11 pwn 9447CTF2015 Search-Engine
      • 6.1.12 pwn N1CTF2018 vote
      • 6.1.13 pwn 34C3CTF2017 readme_revenge
      • 6.1.14 pwn 32C3CTF2015 readme
      • 6.1.15 pwn 34C3CTF2017 SimpleGC
      • 6.1.16 pwn HITBCTF2017 1000levels
      • 6.1.17 pwn SECCONCTF2016 jmper
      • 6.1.18 pwn HITBCTF2017 Sentosa
      • 6.1.19 pwn HITBCTF2018 gundam
      • 6.1.20 pwn 33C3CTF2016 babyfengshui
      • 6.1.21 pwn HITCONCTF2016 Secret_Holder
      • 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
      • 6.1.23 pwn BCTF2016 bcloud
      • 6.1.24 pwn HITCONCTF2016 House_of_Orange
      • 6.1.25 pwn HCTF2017 babyprintf
      • 6.1.26 pwn 34C3CTF2017 300
      • 6.1.27 pwn SECCONCTF2016 tinypad
      • 6.1.28 pwn ASISCTF2016 b00ks
      • 6.1.29 pwn Insomni'hack_teaserCTF2017 The_Great_Escape_part-3
      • 6.1.30 pwn HITCONCTF2017 Ghost_in_the_heap
      • 6.1.31 pwn HITBCTF2018 mutepig
      • 6.1.32 pwn SECCONCTF2017 vm_no_fun
      • 6.1.33 pwn 34C3CTF2017 LFA
      • 6.1.34 pwn N1CTF2018 memsafety
      • 6.1.35 pwn 0CTF2018 heapstorm2
      • 6.1.36 pwn NJCTF2017 messager
      • 6.1.37 pwn sixstarctf2018 babystack
      • 6.1.38 pwn HITCONCMT2017 pwn200
      • 6.1.39 pwn BCTF2018 house_of_Atum
      • 6.1.40 pwn LCTF2016 pwn200
      • 6.1.41 pwn PlaidCTF2015 PlaidDB
      • 6.1.42 pwn hacklu2015 bookstore
      • 6.1.43 pwn 0CTF2018 babyheap
      • 6.1.44 pwn ASIS2017 start_hard
      • 6.1.45 pwn LCTF2016 pwn100
    • Reverse
      • 6.2.1 re XHPCTF2017 dont_panic
      • 6.2.2 re ECTF2016 tayy
      • 6.2.3 re CodegateCTF2017 angrybird
      • 6.2.4 re CSAWCTF2015 wyvern
      • 6.2.5 re PicoCTF2014 Baleful
      • 6.2.6 re SECCONCTF2017 printf_machine
      • 6.2.7 re CodegateCTF2018 RedVelvet
      • 6.2.8 re DefcampCTF2015 entry_language
    • Web
      • 6.3.1 web HCTF2017 babycrack
    • Crypto
    • Misc
    • Mobile
  • 七、实战篇
    • CVE
      • 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
      • 7.1.2 CVE-2015-0235 glibc __nss_hostname_digits_dots 堆溢出漏洞
      • 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
      • 7.1.4 CVE-2017-13089 wget skip_short_body 栈溢出漏洞
      • 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
      • 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
      • 7.1.7 CVE-2018-6323 GNU binutils elf_object_p 整型溢出漏洞
      • 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
      • 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
    • Malware
  • 八、学术篇
    • 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
    • 8.2 Return-Oriented Programming without Returns
    • 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
    • 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
    • 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
    • 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
    • 8.9 Symbolic Execution for Software Testing: Three Decades Later
    • 8.10 AEG: Automatic Exploit Generation
    • 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Softwa
    • 8.13 New Frontiers of Reverse Engineering
    • 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
    • 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
    • 8.22 Practical Memory Checking With Dr. Memory
    • 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
    • 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
    • 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
    • 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
    • 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
    • 8.28 Cross-Architecture Bug Search in Binary Executables
    • 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
    • 8.30 Preventing brute force attacks against stack canary protection on networking servers
    • 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
    • 8.34 Enhancing Symbolic Execution with Veritesting
    • 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
    • 8.39 DART: Directed Automated Random Testing
    • 8.40 EXE: Automatically Generating Inputs of Death
    • 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
    • 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits
    • 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
    • 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
    • 8.45 Ramblr: Making Reassembly Great Again
    • 8.46 FreeGuard: A Faster Secure Heap Allocator
    • 8.48 Reassembleable Disassembling
  • 九、附录
    • 9.1 更多 Linux 工具
    • 9.2 更多 Windows 工具
    • 9.3 更多资源
    • 9.4 Linux 系统调用表
    • 9.5 python2到3字符串转换
    • 9.6 幻灯片
Powered by GitBook
On this page
  • 编译安装
  • 系统调用
  • 参考资料

Was this helpful?

  1. 一、基础知识篇
  2. 1.5 逆向工程基础

1.5.9 Linux 内核

Previous1.5.8 glibc mallocNext1.5.10 Windows 内核

Last updated 3 years ago

Was this helpful?

编译安装

我的编译环境是如下。首先安装必要的软件:

$ uname -a
Linux firmy-pc 4.14.34-1-MANJARO #1 SMP PREEMPT Thu Apr 12 17:26:43 UTC 2018 x86_64 GNU/Linux
$ yaourt -S base-devel

为了方便学习,选择一个稳定版本,比如最新的 4.16.3。

$ mkdir ~/kernelbuild && cd ~/kernelbuild
$ wget -c https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.16.3.tar.xz
$ tar -xvJf linux-4.16.3.tar.xz
$ cd linux-4.16.3/
$ make clean && make mrproper

内核的配置选项在 .config 文件中,有两种方法可以设置这些选项,一种是从当前内核中获得一份默认配置:

$ zcat /proc/config.gz > .config
$ make oldconfig

另一种是自己生成一份配置:

$ make localmodconfig   # 使用当前内核配置生成
    # OR
$ make defconfig        # 根据当前架构默认的配置生成

为了能够对内核进行调试,需要设置下面的参数:

CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_INFO_REDUCED=n
CONFIG_GDB_SCRIPTS=y

如果需要使用 kgdb,还需要开启下面的参数:

CONFIG_STRICT_KERNEL_RWX=n
CONFIG_FRAME_POINTER=y
CONFIG_KGDB=y
CONFIG_KGDB_SERIAL_CONSOLE=y

CONFIG_STRICT_KERNEL_RWX 会将特定的内核内存空间标记为只读,这将阻止你使用软件断点,最好将它关掉。 如果希望使用 kdb,在上面的基础上再加上:

CONFIG_KGDB_KDB=y
CONFIG_KDB_KEYBOARD=y

另外如果你在调试时不希望被 KASLR 干扰,可以在编译时关掉它:

CONFIG_RANDOMIZE_BASE=n
CONFIG_RANDOMIZE_MEMORY=n

将上面的参数写到文件 .config-fragment,然后合并进 .config:

$ ./scripts/kconfig/merge_config.sh .config .config-fragment

最后因为内核编译默认开启了 -O2 优化,可以修改 Makefile 为 -O0:

KBUILD_CFLAGS   += -O0

编译内核:

$ make

完成后当然就是安装,但我们这里并不是真的要将本机的内核换掉,接下来的过程就交给 QEMU 了。(参考章节4.1)

系统调用

在 Linux 中,系统调用是一些内核空间函数,是用户空间访问内核的唯一手段。这些函数与 CPU 架构有关,x86-64 架构提供了 322 个系统调用,x86 提供了 358 个系统调用(参考附录9.4)。

.data

msg:
    .ascii "hello 32-bit!\n"
    len = . - msg

.text
    .global _start

_start:
    movl $len, %edx
    movl $msg, %ecx
    movl $1, %ebx
    movl $4, %eax
    int $0x80

    movl $0, %ebx
    movl $1, %eax
    int $0x80

编译执行(可以编译成64位程序的):

$ gcc -m32 -c hello32.S
$ ld -m elf_i386 -o hello32 hello32.o
$ strace ./hello32
execve("./hello32", ["./hello32"], 0x7ffff990f830 /* 68 vars */) = 0
strace: [ Process PID=19355 runs in 32 bit mode. ]
write(1, "hello 32-bit!\n", 14hello 32-bit!
)         = 14
exit(0)                                 = ?
+++ exited with 0 +++

可以看到程序将调用号保存到 eax,并通过 int $0x80 来使用系统调用。

虽然软中断 int 0x80 非常经典,早期 2.6 及以前版本的内核都使用这种机制进行系统调用。但因其性能较差,在往后的内核中使用了快速系统调用指令来替代,32 位系统使用 sysenter(对应sysexit) 指令,而 64 位系统使用 syscall(对应sysret) 指令。

一个使用 sysenter 的例子:

.data

msg:
    .ascii "Hello sysenter!\n"
    len = . - msg

.text
    .globl _start

_start:
    movl $len, %edx
    movl $msg, %ecx
    movl $1, %ebx
    movl $4, %eax
    # Setting the stack for the systenter
    pushl $sysenter_ret
    pushl %ecx
    pushl %edx
    pushl %ebp
    movl %esp, %ebp
    sysenter

sysenter_ret:
    movl $0, %ebx
    movl $1, %eax
    # Setting the stack for the systenter
    pushl $sysenter_ret
    pushl %ecx
    pushl %edx
    pushl %ebp
    movl %esp, %ebp
    sysenter
$ gcc -m32 -c sysenter.S
$ ld -m elf_i386 -o sysenter sysenter.o
$ strace ./sysenter
execve("./sysenter", ["./sysenter"], 0x7fff73993fd0 /* 69 vars */) = 0
strace: [ Process PID=7663 runs in 32 bit mode. ]
write(1, "Hello sysenter!\n", 16Hello sysenter!
)       = 16
exit(0)                                 = ?
+++ exited with 0 +++

可以看到,为了使用 sysenter 指令,需要为其手动布置栈。这是因为在 sysenter 返回时,会执行 __kernel_vsyscall 的后半部分(从0xf7fd5059开始):

gdb-peda$ vmmap vdso
Start      End        Perm      Name
0xf7fd4000 0xf7fd6000 r-xp      [vdso]
gdb-peda$ disassemble __kernel_vsyscall
Dump of assembler code for function __kernel_vsyscall:
   0xf7fd5050 <+0>:     push   ecx
   0xf7fd5051 <+1>:     push   edx
   0xf7fd5052 <+2>:     push   ebp
   0xf7fd5053 <+3>:     mov    ebp,esp
   0xf7fd5055 <+5>:     sysenter
   0xf7fd5057 <+7>:     int    0x80
   0xf7fd5059 <+9>:     pop    ebp
   0xf7fd505a <+10>:    pop    edx
   0xf7fd505b <+11>:    pop    ecx
   0xf7fd505c <+12>:    ret
End of assembler dump.

__kernel_vsyscall 封装了 sysenter 调用的规范,是 vDSO 的一部分,而 vDSO 允许程序在用户层中执行内核代码。关于 vDSO 的内容我们将在后面的章节中细讲。

下面是一个 64 位使用 syscall 的例子:

.data

msg:
    .ascii "Hello 64-bit!\n"
    len = . - msg

.text
    .global _start

_start:
    movq  $1, %rdi
    movq  $msg, %rsi
    movq  $len, %rdx
    movq  $1, %rax
    syscall

    xorq  %rdi, %rdi
    movq  $60, %rax
    syscall

编译执行(不能编译成32位程序):

$ gcc -c hello64.S
$ ld -o hello64 hello64.o
$ strace ./hello64
execve("./hello64", ["./hello64"], 0x7ffe11485290 /* 68 vars */) = 0
write(1, "Hello 64-bit!\n", 14Hello 64-bit!
)         = 14
exit(0)                                 = ?
+++ exited with 0 +++

在这两个例子中我们直接使用了 execve、write 和 exit 三个系统调用。但一般情况下,应用程序通过在用户空间实现的应用编程接口(API)而不是直接通过系统调用来编程。例如函数 printf() 的调用过程是这样的:

调用printf() ==> C库中的printf() ==> C库中的write() ==> write()系统调用

参考资料

下面是一个用 32 位汇编写的例子,:

源码
The Linux Kernel documentation
linux-insides
编译安装
系统调用
参考资料