📊
CTF-All-In-One
  • 简介
  • 前言
  • 一、基础知识篇
    • 1.1 CTF 简介
    • 1.2 学习方法
    • 1.3 Linux 基础
    • 1.4 Web 安全基础
      • 1.4.1 HTML 基础
      • 1.4.2 HTTP 协议基础
      • 1.4.3 JavaScript 基础
      • 1.4.4 常见 Web 服务器基础
      • 1.4.5 OWASP Top Ten Project 漏洞基础
      • 1.4.6 PHP 源码审计基础
    • 1.5 逆向工程基础
      • 1.5.1 C/C++ 语言基础
      • 1.5.2 汇编基础
      • 1.5.3 Linux ELF
      • 1.5.4 Windows PE
      • 1.5.5 静态链接
      • 1.5.6 动态链接
      • 1.5.7 内存管理
      • 1.5.8 glibc malloc
      • 1.5.9 Linux 内核
      • 1.5.10 Windows 内核
      • 1.5.11 jemalloc
    • 1.6 密码学基础
      • 1.6.1 密码学导论
      • 1.6.2 流密码
      • 1.6.3 分组密码
      • 1.6.4 公钥密码
      • 1.6.5 消息认证和哈希函数
      • 1.6.6 数字签名
      • 1.6.7 密码协议
      • 1.6.8 密钥分配与管理
      • 1.6.9 数字货币
    • 1.7 Android 安全基础
      • 1.7.1 Android 环境搭建
      • 1.7.2 Dalvik 指令集
      • 1.7.3 ARM 汇编基础
      • 1.7.4 Android 常用工具
  • 二、工具篇
    • 虚拟化分析环境
      • 2.1.1 VirtualBox
      • 2.1.2 QEMU
      • 2.1.3 Docker
      • 2.1.4 Unicorn
    • 静态分析工具
      • 2.2.1 radare2
      • 2.2.2 IDA Pro
      • 2.2.3 JEB
      • 2.2.4 Capstone
      • 2.2.5 Keystone
      • 2.2.6 Ghidra
    • 动态分析工具
      • 2.3.1 GDB
      • 2.3.2 OllyDbg
      • 2.3.3 x64dbg
      • 2.3.4 WinDbg
      • 2.3.5 LLDB
    • 其他工具
      • 2.4.1 pwntools
      • 2.4.2 zio
      • 2.4.3 metasploit
      • 2.4.4 binwalk
      • 2.4.5 Burp Suite
      • 2.4.6 Wireshark
      • 2.4.7 Cuckoo Sandbox
  • 三、分类专题篇
    • Pwn
      • 3.1.1 格式化字符串漏洞
      • 3.1.2 整数溢出
      • 3.1.3 栈溢出
      • 3.1.4 返回导向编程(ROP)(x86)
      • 3.1.5 返回导向编程(ROP)(ARM)
      • 3.1.6 Linux 堆利用(一)
      • 3.1.7 Linux 堆利用(二)
      • 3.1.8 Linux 堆利用(三)
      • 3.1.9 Linux 堆利用(四)
      • 3.1.10 内核 ROP
      • 3.1.11 Linux 内核漏洞利用
      • 3.1.12 Windows 内核漏洞利用
      • 3.1.13 竞争条件
      • 3.1.14 虚拟机逃逸
    • Reverse
      • 3.2.1 patch 二进制文件
      • 3.2.2 脱壳技术(PE)
      • 3.2.3 脱壳技术(ELF)
      • 3.2.4 反调试技术(PE)
      • 3.2.5 反调试技术(ELF)
      • 3.2.6 指令混淆
    • Web
      • 3.3.1 SQL 注入利用
      • 3.3.2 XSS 漏洞利用
    • Crypto
    • Misc
      • 3.5.1 Lsb
    • Mobile
  • 四、技巧篇
    • 4.1 Linux 内核调试
    • 4.2 Linux 命令行技巧
    • 4.3 GCC 编译参数解析
    • 4.4 GCC 堆栈保护技术
    • 4.5 ROP 防御技术
    • 4.6 one-gadget RCE
    • 4.7 通用 gadget
    • 4.8 使用 DynELF 泄露函数地址
    • 4.9 shellcode 开发
    • 4.10 跳转导向编程(JOP)
    • 4.11 利用 mprotect 修改栈权限
    • 4.12 利用 __stack_chk_fail
    • 4.13 利用 _IO_FILE 结构
    • 4.14 glibc tcache 机制
    • 4.15 利用 vsyscall 和 vDSO
  • 五、高级篇
    • 5.0 软件漏洞分析
    • 5.1 模糊测试
      • 5.1.1 AFL fuzzer
      • 5.1.2 libFuzzer
    • 5.2 动态二进制插桩
      • 5.2.1 Pin
      • 5.2.2 DynamoRio
      • 5.2.3 Valgrind
    • 5.3 符号执行
      • 5.3.1 angr
      • 5.3.2 Triton
      • 5.3.3 KLEE
      • 5.3.4 S²E
    • 5.4 数据流分析
      • 5.4.1 Soot
    • 5.5 污点分析
      • 5.5.1 TaintCheck
    • 5.6 LLVM
      • 5.6.1 Clang
    • 5.7 程序切片
    • 5.8 SAT/SMT
      • 5.8.1 Z3
    • 5.9 基于模式的漏洞分析
    • 5.10 基于二进制比对的漏洞分析
    • 5.11 反编译技术
      • 5.11.1 RetDec
  • 六、题解篇
    • Pwn
      • 6.1.1 pwn HCTF2016 brop
      • 6.1.2 pwn NJCTF2017 pingme
      • 6.1.3 pwn XDCTF2015 pwn200
      • 6.1.4 pwn BackdoorCTF2017 Fun-Signals
      • 6.1.5 pwn GreHackCTF2017 beerfighter
      • 6.1.6 pwn DefconCTF2015 fuckup
      • 6.1.7 pwn 0CTF2015 freenote
      • 6.1.8 pwn DCTF2017 Flex
      • 6.1.9 pwn RHme3 Exploitation
      • 6.1.10 pwn 0CTF2017 BabyHeap2017
      • 6.1.11 pwn 9447CTF2015 Search-Engine
      • 6.1.12 pwn N1CTF2018 vote
      • 6.1.13 pwn 34C3CTF2017 readme_revenge
      • 6.1.14 pwn 32C3CTF2015 readme
      • 6.1.15 pwn 34C3CTF2017 SimpleGC
      • 6.1.16 pwn HITBCTF2017 1000levels
      • 6.1.17 pwn SECCONCTF2016 jmper
      • 6.1.18 pwn HITBCTF2017 Sentosa
      • 6.1.19 pwn HITBCTF2018 gundam
      • 6.1.20 pwn 33C3CTF2016 babyfengshui
      • 6.1.21 pwn HITCONCTF2016 Secret_Holder
      • 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
      • 6.1.23 pwn BCTF2016 bcloud
      • 6.1.24 pwn HITCONCTF2016 House_of_Orange
      • 6.1.25 pwn HCTF2017 babyprintf
      • 6.1.26 pwn 34C3CTF2017 300
      • 6.1.27 pwn SECCONCTF2016 tinypad
      • 6.1.28 pwn ASISCTF2016 b00ks
      • 6.1.29 pwn Insomni'hack_teaserCTF2017 The_Great_Escape_part-3
      • 6.1.30 pwn HITCONCTF2017 Ghost_in_the_heap
      • 6.1.31 pwn HITBCTF2018 mutepig
      • 6.1.32 pwn SECCONCTF2017 vm_no_fun
      • 6.1.33 pwn 34C3CTF2017 LFA
      • 6.1.34 pwn N1CTF2018 memsafety
      • 6.1.35 pwn 0CTF2018 heapstorm2
      • 6.1.36 pwn NJCTF2017 messager
      • 6.1.37 pwn sixstarctf2018 babystack
      • 6.1.38 pwn HITCONCMT2017 pwn200
      • 6.1.39 pwn BCTF2018 house_of_Atum
      • 6.1.40 pwn LCTF2016 pwn200
      • 6.1.41 pwn PlaidCTF2015 PlaidDB
      • 6.1.42 pwn hacklu2015 bookstore
      • 6.1.43 pwn 0CTF2018 babyheap
      • 6.1.44 pwn ASIS2017 start_hard
      • 6.1.45 pwn LCTF2016 pwn100
    • Reverse
      • 6.2.1 re XHPCTF2017 dont_panic
      • 6.2.2 re ECTF2016 tayy
      • 6.2.3 re CodegateCTF2017 angrybird
      • 6.2.4 re CSAWCTF2015 wyvern
      • 6.2.5 re PicoCTF2014 Baleful
      • 6.2.6 re SECCONCTF2017 printf_machine
      • 6.2.7 re CodegateCTF2018 RedVelvet
      • 6.2.8 re DefcampCTF2015 entry_language
    • Web
      • 6.3.1 web HCTF2017 babycrack
    • Crypto
    • Misc
    • Mobile
  • 七、实战篇
    • CVE
      • 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
      • 7.1.2 CVE-2015-0235 glibc __nss_hostname_digits_dots 堆溢出漏洞
      • 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
      • 7.1.4 CVE-2017-13089 wget skip_short_body 栈溢出漏洞
      • 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
      • 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
      • 7.1.7 CVE-2018-6323 GNU binutils elf_object_p 整型溢出漏洞
      • 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
      • 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
    • Malware
  • 八、学术篇
    • 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
    • 8.2 Return-Oriented Programming without Returns
    • 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
    • 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
    • 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
    • 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
    • 8.9 Symbolic Execution for Software Testing: Three Decades Later
    • 8.10 AEG: Automatic Exploit Generation
    • 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Softwa
    • 8.13 New Frontiers of Reverse Engineering
    • 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
    • 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
    • 8.22 Practical Memory Checking With Dr. Memory
    • 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
    • 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
    • 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
    • 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
    • 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
    • 8.28 Cross-Architecture Bug Search in Binary Executables
    • 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
    • 8.30 Preventing brute force attacks against stack canary protection on networking servers
    • 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
    • 8.34 Enhancing Symbolic Execution with Veritesting
    • 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
    • 8.39 DART: Directed Automated Random Testing
    • 8.40 EXE: Automatically Generating Inputs of Death
    • 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
    • 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits
    • 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
    • 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
    • 8.45 Ramblr: Making Reassembly Great Again
    • 8.46 FreeGuard: A Faster Secure Heap Allocator
    • 8.48 Reassembleable Disassembling
  • 九、附录
    • 9.1 更多 Linux 工具
    • 9.2 更多 Windows 工具
    • 9.3 更多资源
    • 9.4 Linux 系统调用表
    • 9.5 python2到3字符串转换
    • 9.6 幻灯片
Powered by GitBook
On this page
  • 回顾 canary
  • libc 2.23
  • CTF 实例
  • libc 2.25
  • 参考资料

Was this helpful?

  1. 四、技巧篇

4.12 利用 __stack_chk_fail

Previous4.11 利用 mprotect 修改栈权限Next4.13 利用 _IO_FILE 结构

Last updated 3 years ago

Was this helpful?

回顾 canary

在章节 4.4 中我们已经知道了有一种叫做 canary 的漏洞缓解机制,用来判断是否发生了栈溢出。

这一节我们来看一下,在开启了 canary 的程序上,怎样利用 __stack_chk_fail 泄漏信息。

一个例子:

#include <stdio.h>
void main(int argc, char **argv) {
    printf("argv[0]: %s\n", argv[0]);

    char buf[10];
    scanf("%s", buf);

    // argv[0] = "Hello World!";
}

我们先注释掉最后一行:

$ gcc chk_fail.c
$ python -c 'print "A"*50' | ./a.out
argv[0]: ./a.out
*** stack smashing detected ***: ./a.out terminated
Aborted (core dumped)

可以看到默认情况下 argv[0] 是指向程序路径及名称的指针,然后错误信息中打印出了这个字符串。

然后解掉注释再来看一看:

$ python -c 'print "A"*50' | ./a.out
argv[0]: ./a.out
*** stack smashing detected ***: Hello World! terminated
Aborted (core dumped)

由于程序中我们修改 argv[0],此时错误信息就打印出了 Hello World!。是不是很神奇。

main 函数的反汇编结果如下:

gef➤  disassemble main
Dump of assembler code for function main:
   0x00000000004005f6 <+0>:	push   rbp
   0x00000000004005f7 <+1>:	mov    rbp,rsp
=> 0x00000000004005fa <+4>:	sub    rsp,0x30
   0x00000000004005fe <+8>:	mov    DWORD PTR [rbp-0x24],edi
   0x0000000000400601 <+11>:	mov    QWORD PTR [rbp-0x30],rsi
   0x0000000000400605 <+15>:	mov    rax,QWORD PTR fs:0x28
   0x000000000040060e <+24>:	mov    QWORD PTR [rbp-0x8],rax
   0x0000000000400612 <+28>:	xor    eax,eax
   0x0000000000400614 <+30>:	mov    rax,QWORD PTR [rbp-0x30]
   0x0000000000400618 <+34>:	mov    rax,QWORD PTR [rax]
   0x000000000040061b <+37>:	mov    rsi,rax
   0x000000000040061e <+40>:	mov    edi,0x4006f4
   0x0000000000400623 <+45>:	mov    eax,0x0
   0x0000000000400628 <+50>:	call   0x4004c0 <printf@plt>
   0x000000000040062d <+55>:	lea    rax,[rbp-0x20]
   0x0000000000400631 <+59>:	mov    rsi,rax
   0x0000000000400634 <+62>:	mov    edi,0x400701
   0x0000000000400639 <+67>:	mov    eax,0x0
   0x000000000040063e <+72>:	call   0x4004e0 <__isoc99_scanf@plt>
   0x0000000000400643 <+77>:	mov    rax,QWORD PTR [rbp-0x30]
   0x0000000000400647 <+81>:	mov    QWORD PTR [rax],0x400704
   0x000000000040064e <+88>:	nop
   0x000000000040064f <+89>:	mov    rax,QWORD PTR [rbp-0x8]
   0x0000000000400653 <+93>:	xor    rax,QWORD PTR fs:0x28    # 检查 canary 是否相同
   0x000000000040065c <+102>:	je     0x400663 <main+109>      # 相同
   0x000000000040065e <+104>:	call   0x4004b0 <__stack_chk_fail@plt>  # 不相同
   0x0000000000400663 <+109>:	leave  
   0x0000000000400664 <+110>:	ret
End of assembler dump.

所以当 canary 检查失败的时候,即产生栈溢出,覆盖掉了原来的 canary 的时候,函数不能正常返回,而是执行 __stack_chk_fail() 函数,打印出 argv[0] 指向的字符串。

libc 2.23

Ubuntu 16.04 使用的是 libc-2.23,其 __stack_chk_fail() 函数如下:

// debug/stack_chk_fail.c

extern char **__libc_argv attribute_hidden;

void
__attribute__ ((noreturn))
__stack_chk_fail (void)
{
  __fortify_fail ("stack smashing detected");
}

调用函数 __fortify_fail():

// debug/fortify_fail.c

extern char **__libc_argv attribute_hidden;

void
__attribute__ ((noreturn)) internal_function
__fortify_fail (const char *msg)
{
  /* The loop is added only to keep gcc happy.  */
  while (1)
    __libc_message (2, "*** %s ***: %s terminated\n",
                    msg, __libc_argv[0] ?: "<unknown>");
}
libc_hidden_def (__fortify_fail)

__fortify_fail() 调用函数 __libc_message() 打印出错误信息和 argv[0]。

还有一个错误信息输出到哪儿的问题,再看一下 __libc_message():

// sysdeps/posix/libc_fatal.c

/* Abort with an error message.  */
void
__libc_message (int do_abort, const char *fmt, ...)
{
  va_list ap;
  int fd = -1;

  va_start (ap, fmt);

#ifdef FATAL_PREPARE
  FATAL_PREPARE;
#endif

  /* Open a descriptor for /dev/tty unless the user explicitly
     requests errors on standard error.  */
  const char *on_2 = __libc_secure_getenv ("LIBC_FATAL_STDERR_");
  if (on_2 == NULL || *on_2 == '\0')
    fd = open_not_cancel_2 (_PATH_TTY, O_RDWR | O_NOCTTY | O_NDELAY);

  if (fd == -1)
    fd = STDERR_FILENO;

环境变量 LIBC_FATAL_STDERR_ 通过函数 __libc_secure_getenv 来读取,如果该变量没有被设置或者为空,即 \0 或 NULL,错误信息 stderr 会被重定向到 _PATH_TTY,该值通常是 /dev/tty,因此会直接在当前终端打印出来,而不是传到 stderr。

CTF 实例

CTF 中就有这样一种题目,需要我们把 argv[0] 覆盖为 flag 的地址,并利用 __stack_chk_fail() 把flag 给打印出来。

实例可以查看章节 6.1.13 和 6.1.14。

libc 2.25

最后我们来看一下 libc-2.25 里的 __stack_chk_fail:

extern char **__libc_argv attribute_hidden;
void
__attribute__ ((noreturn))
__stack_chk_fail (void)
{
  __fortify_fail_abort (false, "stack smashing detected");
}
strong_alias (__stack_chk_fail, __stack_chk_fail_local)
extern char **__libc_argv attribute_hidden;

void
__attribute__ ((noreturn))
__fortify_fail_abort (_Bool need_backtrace, const char *msg)
{
  /* The loop is added only to keep gcc happy.  Don't pass down
     __libc_argv[0] if we aren't doing backtrace since __libc_argv[0]
     may point to the corrupted stack.  */
  while (1)
    __libc_message (need_backtrace ? (do_abort | do_backtrace) : do_abort,
                    "*** %s ***: %s terminated\n",
                    msg,
                    (need_backtrace && __libc_argv[0] != NULL
                     ? __libc_argv[0] : "<unknown>"));
}

void
__attribute__ ((noreturn))
__fortify_fail (const char *msg)
{
  __fortify_fail_abort (true, msg);
}

libc_hidden_def (__fortify_fail)
libc_hidden_def (__fortify_fail_abort)

函数 __fortify_fail_abort() 在第一个参数为 false 时不再进行栈回溯,直接以打印出字符串 <unknown> 结束,也就没有办法输出 argv[0] 了。

就像下面这样:

$ python -c 'print("A"*50)' | ./a.out
argv[0]: ./a.out
*** stack smashing detected ***: <unknown> terminated
Aborted (core dumped)

参考资料

它使用了新函数 __fortify_fail_abort(),这个函数是在 这次提交中新增的:

BZ #12189
Adventure with Stack Smashing Protector (SSP)
回顾 canary
libc 2.23
CTF 实例
libc 2.25
参考资料